Einkristall-Röntgenstrukturanalysen an Verbindungen mit kovalenter Metall-Metall-Bindung, III¹⁾

Die Molekül- und Kristallstruktur von Octacarbonyl-bis[µ-(pentacarbonylrhenium)indium(III)]dirhenium

Hans Preut und Hans-J. Haupt*

Lehrstuhl für Anorganische Chemie der Universität Dortmund, D-4600 Dortmund-Hombruch, Postfach 500

Eingegangen am 11. Oktober 1974

 $Re_2(CO)_8{\mu-InRe(CO)_s}_2$ kristallisiert in der Raumgruppe $P 2_1/n$ mit den Gitterparametern a = 6.788(2) Å, b = 16.352(3) Å; c = 12.519(3) Å und $\beta = 89.23(5)^\circ$ mit zwei Formeleinheiten (Z = 2) pro Elementarzelle. Das Molekül enthält einen ebenen Re_2In_2 -Metallring, in dem der Re-Re-Abstand = 3.232(1) Å und der spitze Winkel am Brückenatom In von 71.07(3)° eine Bindung zwischen den Rheniumatomen aufzeigen. Die Re-Atome der beiden $Re(CO)_5$ -Liganden liegen in *trans*-Stellung zur Re_2In_2 -Ringebene. Die Mittelwerte der übrigen Bindungsabstände betragen: In - Re = 2.766(1) Å, Re - C = 1.98(2) Å, C - O = 1.14(2) Å.

Single Crystal X-Ray Analysis of Compounds with a Covalent Metal-Metal Bond, III¹⁾ The Molecular and Crystal Structure of Octacarbonyl-bis[µ-(pentacarbonylrhenium)indium(III)]dirhenium

Re₂(CO)₈{ μ -InRe(CO)₅}₂ crystallizes in the space group $P 2_1/n$ with the lattice parameters a = 6.788(2) Å, b = 16.352(3) Å; c = 12.519(3) Å, and $\beta = 89.23(5)^c$ with two formula units in the cell. The molecule contains a planar Re₂In₂ ring, in which the Re – Re distance of 3.232(1) Å and the acute angle at the bridging atom In of $71.07(3)^\circ$ are consistent with the existence of a Re – Re bond. The Re atoms of the two Re(CO)₅ ligands have a *trans*-configuration with respect to the plane of the Re₂In₂-metal ring. The mean values for the remaining bond distances are: In – Re = 2.766(1) Å, Re – C = 1.98(2) Å, C – O = 1.14(2) Å.

Im Bombenrohr wurden aus dem System $In/Re_2(CO)_{10}/Xylol bei 175-185$ °C und einer Reaktionsdauer von einem Monat rote Nadeln zugänglich²⁾. Die Ergebnisse der Elementaranalyse und eine Ähnlichkeit im Lösungsspektrum für die v(CO)- bzw. im Festkörperspektrum für die v(Metall-Metall)-IR-Banden mit solchen Bandenlagen von $Mn_2(CO)_8{\mu-GaMn(CO)_5}^2$,³⁾ geben einen Hinweis auf die Molekularformel $Re_2(CO)_8{\mu-InRe(CO)_5}^2$. Eine Röntgenstrukturanalyse sollte nun den Molekülaufbau des Festkörpers

¹⁾ II. Mitteil.: H. Preut und H.-J. Haupt, Z. Anorg. Allg. Chem., im Druck.

²⁾ H.-J. Haupt und F. Neumann, unveröffentlicht.

³⁾ H.-J. Haupt und F. Neumann, J. Organomet. Chem., im Druck.

aufklären, um damit den Vergleich für Mn_2M_2 -Metallvierringe (M = Ga, In) mit Re_2In_2 -Ringen in isoelektronischen Verbindungen weiterführen zu können⁴).

Bisher wurde über keine Röntgenstrukturanalyse einer Verbindung mit In – Re-Bindung berichtet, so daß ein derartiger Metall-Metall-Bindungsabstand erstmals an Re₂(CO)₈{µ- $InRe(CO)_{5}_{2}$ bestimmt wird.

Experimentelles

Die Intensitäten der Reflexe wurden auf einem automatischen Vierkreisdiffraktometer der Firma Hilger und Watts gemessen. Die Röntgenstrahlung ($\lambda = 0.70926$ Å) wurde über einen Graphitmonochromator monochromatisiert und durch einen Szintillationszähler registriert. Für $\text{Re}_2(\text{CO})_8\{\mu-\text{InRe}(\text{CO})_5\}_2$ wurde eine Meßzeit von 72 s pro Reflex aufgewendet.

Von einem roten Einkristall dieser Verbindung mit den Abmessungen $0.35 \times 0.008 \times 0.08 \text{ mm}^3$ entlang [100], [010] und [001] wurden 3301 symmetrisch unabhängige Reflexe, deren Linienprofile signifikant ($J \ge 3\sigma$) aus dem Untergrund herausragten, im Bereich $2^{\circ} \le \vartheta \le 33^{\circ}$ vermessen. Neben der Lorentz-Polarisations-Korrektur wurde eine Absorptionskorrektur durchgeführt.

	Гаb.	1.	Kristalldaten	von	Re ₂ (CO)	яł	μ-InRe(CO)	١,
--	------	----	---------------	-----	----------------------	----	------------	----

a = 6.788(2) Å	Z = 2	
b = 16.352(3) Å	F(000) = 1300	
c = 12.519(3) Å	$P 2_1/n$	
$\beta = 89.23(5)^{\circ}$	$\lambda = 0.70926 \text{ Å}$	
$V = 1389(1) \text{ Å}^3$	$\mu = 200 \mathrm{cm}^{-1}$	
$d(ber) = 3.53 \text{ g cm}^{-3}$	Mol-Masse = 1478	
	a = 6.788(2) Å b = 16.352(3) Å c = 12.519(3) Å $\beta = 89.23(5)^{\circ}$ $V = 1389(1) \text{ Å}^{3}$ $d(\text{ber}) = 3.53 \text{ g cm}^{-3}$	$a = 6.788(2) \text{ Å}$ $Z = 2$ $b = 16.352(3) \text{ Å}$ $F(000) = 1300$ $c = 12.519(3) \text{ Å}$ $P 2_1/n$ $\beta = 89.23(5)^{\circ}$ $\lambda = 0.70926 \text{ Å}$ $V = 1389(1) \text{ Å}^3$ $\mu = 200 \text{ cm}^{-1}$ $d(ber) = 3.53 \text{ g cm}^{-3}$ MolMasse = 1478

Weitere Einzelheiten über Auswertung und Rechenprogramme können l. c. 4) entnommen werden. Die Verfeinerung der Atomparameter nach der Methode der kleinsten Quadrate (volle Koeffizientenmatrix) führte zu einem ungewichteten R-Wert von 0.048. In Tab. 2 und 3 sind die Endwerte der Verfeinerung angegeben.

		Standa	rdabweic	hungen	1			Tab. 3	. Temp	eraturia	ktoren	p _{ik} · 10"	
Atom	x/a	٥	<u>y</u> /b	σ	z/c	σ	Atom.	β ₁₁	β22	β33	β ₁₂	β13	\$ 25
In 1	12930	15	56160	6	64490	8	In 1	127	24	24	-5	-13	-3
Re 1	23125	8	62579	3	83643	4	Re 1	111	22	21	-1	-10	-2
Re 2	551 92	8	91910	3	93102	4	Re 2	94	18	22	4	-7	0
C 1	71 362	247	12153	100	2604	149	C 1	129	22	50	4.	-17	-4
01	86373	197	14395	81	э	120	0 1	161	36	70	-14	6	-3
C 2	32544	245	18482	107	3432	157	C 2	128	27	54	-1	-24	0
02	25320	195	24666	78	2258	1 54	0 2	205	25	104	23	-22	4
сэ	19127	237	3205	100	1c644	1,58	C 3	117	25	39	5	2	-1
03	3971	185	538	85	12882	117	03	154	45	63	-5	15	9
C 4	50186	283	10643	125	21639	138	C 4	200	48	23	18	-46	-12
04	52734	267	12468	114	30800	110	04	418	76	.33	32	-47	- 36
C 5	1253	263	16197	109	-27265	145	0.5	162	30	39	1-5	-18	ć
C 5	-12396	221	18057	101	-23505	126	05	218	66	60	48	25	1
C 6	14551	2L9	1736	114	- 56611	136	c 6	147	32	34	2	-26	-6
06	7062	234	- 4338	86	-37827	131	06	306	29	77	-20	-6	-1
C 7	52810	277	3217	126	- 36854	163	C 7	157	39	46	3	-1	-4
0 7	67527	236	5494	103	-41351	152	0 7	222	67	95	20	23	-12
с 8	391 36	265	2 3225	112	-29392	136	c 8	190	29	31	-1	-20	-1
C 8	46092	243	29099	90	-26937	134	8 O	556	36	74	-27	- 79	-6
¢ 9	20341	265	16910	109-	-48127	128	C 9	195	31	21	•>	-23	9
09	17201	223	19326	91	-56447	115	0.9	296	46	47	-6	- 39	13
C42277	4. Tab.2						C 422/76	Tab.3					

Tab. 2. Lagekoordinaten · 10⁵ mit

4) H. Preut und H.-J. Haupt, Chem. Ber. 107, 2860 (1974).

Strukturbeschreibung und Diskussion

In der Elementarzelle des monoklinen Kristalls sind zwei Formeleinheiten $\text{Re}_2(\text{CO})_8 \{\mu$ -InRe(CO)₅ $\}_2$ (vgl. Tab. 1) enthalten. Der Molekülaufbau von $\text{Re}_2(\text{CO})_8 \{\mu$ -InRe(CO)₅ $\}_2$ und die Bezeichnung der Atome gehen aus Abb. 1 hervor. Er gleicht demjenigen der isoelektronischen $\text{Mn}_2(\text{CO})_8 \{\mu$ -MMn(CO)₅ $\}_2$ -Cluster (M = Ga, In)⁴). Eine genauere Betrachtung des Molekülaufbaus zeigt aber einige bemerkenswerte Unterschiede.

Bei den $Mn_2(CO)_8 \{\mu-MMn(CO)_5\}_2$ -Verbindungen liegen die Mn-Atome des Mn_2M_2 -Rhombus auf einer zweizähligen Achse, während die entsprechenden Re-Atome im Re_2In_2 -Ring über ein im Molekülmittelpunkt vorhandenes Symmetriezentrum verknüpft sind. Dieses Symmetriezentrum im Molekül hat zur Folge, daß die Atome des Re_2In_2 -Rings exakt in einer Ebene liegen. Die beiden verbleibenden Metallatome Re 1 und Re 1' kommen nicht in dieser Ebene vor (vgl. Tab. 4). Auf Grund des Symmetriezentrums liegen sie in *trans*-Stellung zur Ringebene. Allgemein sind die in Abb. 1 mit einfachen Zahlen eingezeichneten Atome mit den durch gestrichene Zahlen gekennzeichneten Atomen über dieses Symmetrieelement verknüpft.

Tab. 4. Ebenengleichung der Ebene des Metallringes und Abstände der Atome von dieser Ebene Ebene durch die Atome In 1 – Re 2 – In 1' – Re 2' 0.8943 x + 0.3822 y – 0.2325 z = 3.0354

		Atomat	ostände in Å			
In 1	0.00	C3	- 1.97(2)	06	- 1.83(2)	
Re 1	-0.317(1)	O 3	- 3.12(2)	C7	1.76(2)	
Re2	0.00	C4	0.08(2)	07	2.55(2)	
C1	1.98(2)	04	0.10(2)	C8	1.60(2)	
01	3.11(2)	C5	-1.19(2)	08	2.33(2)	
C2	0.00(2)	05	- 2.05(2)	С9	0.58(2)	
02	-0.02(2)	C6	- 1.03(2)	09	0.77(2)	

Neben diesem Unterschied im Symmetrieelement zwischen $\text{Re}_2(\text{CO})_8\{\mu-\text{InRe}(\text{CO})_5\}_2$ und $\text{Mn}_2(\text{CO})_8\{\mu-\text{MMn}(\text{CO})_5\}_2$ -Clustern (M = Ga, In) gibt es weitere Unterschiede in den Metall-Bindungsabständen und bestimmten Winkeln. So beträgt bei den zuletzt genannten Clustern die maximale Differenz der Ga – Mn- bzw. In – Mn-Bindungsabstände 0.015 Å; demgegenüber wurde die Differenz von 0.069 Å für die In – Re-Bindungsabstände ermittelt (vgl. Tab. 5). Wir werden versuchen, über quantenmechanische Berechnung Aufschluß über die Elektronenverteilung in solchen M₂M'₂-Ringen (M = Ga, In; M' = Mn, Re) zu gewinnen⁵⁾.

Beim Vergleich der Winkel fällt auf, daß die Winkel $[\text{Re}2 - \text{In}1 - \text{Re}2' = 71.07(3)^\circ;$ $\text{In}1 - \text{Re}2 - \text{In}1' = 108.93(4)^\circ]$ sich deutlich von den Ringwinkeln im $Mn_2(CO)_8 \{\mu-GaMn(CO)_5\}_2$ $[Mn2 - Ga1 - Mn3 = 76.86(2)^\circ, Ga1 - Mn2 - Ga1' = 103.46(2)^\circ;$ $Ga1 - Mn3 - Ga1' = 102.82(2)^\circ]$ und im $Mn_2(CO)_8 \{\mu-\text{In}Mn(CO)_5\}_2$ $[Mn2 - \text{In}1 - Mn3 = 76.36(2)^\circ;$ $\text{In}1 - Mn2 - \text{In}1' = 103.64(2)^\circ;$ $\text{In}1 - Mn3 - \text{In}1' = 103.64(2)^\circ]$ unterscheiden. Das gleiche trifft für die äußeren Winkel gegenübergestellter Cluster zu

⁵⁾ H. Preut und H.-J. Haupt, in Vorbereitung.

Abb. 1. Molekülaufbau von $\text{Re}_2(\text{CO})_8 \{\mu - \text{InRe}(\text{CO})_5\}_2$

[Re1-In1-Re2 = 137.32(5)°, Re1-In1-Re2' = 150.50(5)°; Mn1-Ga1-Mn2 = 141.27(2)°, Mn1-Ga1-Mn3 = 141.30(2)°; Mn1-In1-Mn2 = 141.07(2)°, Mn1-Ga1-Mn3 = 141.47(2)°] (vgl. auch Tab. 4 in l. c. ⁴). Aus der Gegenüberstellung der Ringwinkel der isoelektronischen $M'_2(CO)_8{\mu-MM'(CO)_5}_2$ -Cluster (M' = Mn, M = Ga, In; M' = Re, M = In) wird ersichtlich, daß der spitze Winkel im Re₂In₂-Ring um mehr als 5° kleiner ist als der entsprechende Winkel im Mn_2In_2 - bzw. Mn_2Ga_2 -Ring. Dieser Sachverhalt deutet auf eine stärkere Bindungsbeziehung zwischen zwei Re-Atomen (Re2, Re2') in solchen Metallvierringen hin als sie ebenfalls aufgrund von Winkel- und Abstandsverhältnissen für die beiden entsprechenden Mn-Atome im Mn_2In_2 - bzw. Mn_2Ga_2 -Ring angenommen wurde⁴). Diese Beurteilung der relativen Folge der Metall-Metall-Bindungsstärken befindet sich in Einklang mit der Ordnung der Metall-Metall-Bindungskraftkonstanten (mdyn/Å) in den $M'_2(CO)_{10}$ -Verbindungen (M' = Mn, Re) mit der Ordnung Re – Re > Mn – Mn⁶).

Der Re-Re-Abstand von 3.232(1) Å im Re₂(CO)₈{ μ -InRe(CO)₅}² ist erheblich größer als die Re-Re-Abstände in den Verbindungen Re₂(CO)₁₀ (3.04 Å)⁷; (π -C₅H₅)₂Re₂(CO)₅ (2.957(1) Å)⁸, H₂Re₂(CO)₈ (2.896(3) Å)⁹ sowie Re₄(CO)₁₆²⁻ (2.96 Å; 2.98 Å; 3.02 Å)¹⁰ und liegt ungefähr in der Größenordnung wie sie für die Cluster [H₂Re₃(CO)₁₂]⁻ (3.17 Å)¹¹,

⁶⁾ C. O. Quicksall und T. G. Spiro, Inorg. Chem. 8, 2363 (1969).

⁷⁾ N. I. Gapotchenko, N. V. Alekseev, N. E. Kolobova, K. N. Anisimov, I. A. Ronova und A. A. Johansson, J. Organomet. Chem. **35**, 319 (1972).

⁸⁾ A. S. Foust, J. K. Hoyano und W. A. G. Graham, J. Organomet. Chem. 32, C65 (1971).

⁹⁾ M. J. Bennett, W. A. G. Graham, J. K. Hoyano, W. L. Hutcheon, J. Amer. Chem. Soc. 94, 6332 (1972).

¹⁰⁾ R. Bau, B. Fontal, H. D. Kaesz und M. R. Churchill, J. Amer. Chem. Soc. 89, 6374 (1967).

¹¹⁾ M. R. Churchill, P. H. Bird, H. D. Kaesz, R. Bau und F. Fontal, J. Amer. Chem. Soc. 90, 7135 (1968).

 $[H_6Re_4(CO)_{12}]^{2-}$ (3.16 Å)¹²) und HRe₃(CO)₁₄ (3.295(2) Å)¹³) festgestellt wurden, welche H-Brücken enthalten. Der Re-Re-Bindungsabstand im Re₂(CO)₈{µ-InRe(CO)₅}₂ stimmt nahezu mit dem Mn-Mn-Abstand von 3.227(1) Å für Mn₂(CO)₈{µ-InMn(CO)₅}₂ überein. Hieraus ergibt sich zunächst für diese beiden Cluster ebenfalls ein Hinweis für die Ordnung der Metall-Metall-Bindungsstärke Re-Re > Mn-Mn, weil der Einfachbindungsradius von Re größer ist als der von Mn.

Beim Heranziehen der *Pauling*schen kovalenten Einfachbindungsradien von Re (1.28 Å) und In (1.44 Å) kommt die Radiensumme von 2.72 Å den gemessenen In-Re-Bindungsabständen im $\text{Re}_2(\text{CO})_8{\mu-\text{InRe}(\text{CO})_5}_2$ von 2.738(1) Å, 2.754(1) Å und 2.807(1) Å (vgl. Tab. 5) nahe.

Im Mittel beträgt der Re – C-Bindungsabstand 1.98(2) Å und stimmt mit den Werten, die für die Verbindungen HRe₂Mn(CO)₁₄ (Re – C = 1.95(3) Å)¹⁰⁾ und H₂Re₂(CO)₈ (Re – C = 1.99(6) Å)⁹⁾ gefunden wurden, gut überein. Wegen des relativ großen Fehlers, mit dem die Lagekoordinaten der Kohlenstoffatome behaftet sind, läßt sich kein signifikanter Unterschied zwischen den Bindungslängen der Re – C-Bindungsabstände feststellen, wenn auch die nahezu in der Ebene der Re₂In₂-Metallringe liegenden CO-Gruppen (vgl. Tab. 5) die kürzesten Re – C-Abstände (Re 2 – C2 = 1.94(2) Å; Re 2 – C4 = 1.93(2) Å) aufweisen.

Tab. 5. Intramolekulare Bindungsabstände (Å)
und Bindungswinkel (°) mit Standard-
abweichungen in Klammern

Inl-Rel	2.738(1)	C 6-Rel-C 7	89.9(8)
In1-Re2'	2.754(1)	C 6-Ref-C 8	173.9(7)
In1-Re2	2.8o7(1)	C 6-Rel'-C 9	93.5(7)
Re2-Re2'	3.232(1)	C 7-Rel-C 8	91.7(8)
Re2-C 1	1.99 (2)	C 7-Rel-C 9	92.9(8)
Re2-C 2	1.94 (2)	C 8-Rel'-C 9	92.3(7)
Re2-C 3	1.97 (2)	[r:1-Re2-C_1]	87.7(5)
Re2-C 4	1.93 (2)	Inl-Re2-C 2	78.2(5)
Rel-C 5	2.00 (2)	(n1-Ro2-C 3	90.3(5)
Re1-C 6	1.99 (2)	[n1-Ro2-C 4	174.1(6)
Rel-C 7	1.99 (2)	In1-Ro2-C 1	88.2(5)
Rel-C 8	2 ol (2)	Inf-Re2-C 2'	172.9(5)
Hol-C 9	1.98 (2)	Ir.I-Re2-C 3	88.5(5)
Mittelwert	1.98 (2)	Inl-Re2-C 4	76.5(6)
C 1-O 1	1.13 (2)	C 1-Re2-C 2	92.1(7)
C 2-0 2	1.13 (2)	C 1-Re2+C 3	175.4(7)
c 3-0 3	1.15 (2)	C 1-Re2-C 4	90.2(8)
C 4-0 4	1 20 (2)	C 2-Re24C 3	91.6(7)
0 5-0 5	1.11 (2)	C 2-He2-C 4	96.4(8)
c 6-0 6	1.13 (2)	C 3-Re2-C 4	92.2(7)
C 7-0 /	1.13 (2)	Rel-Inl-Re2	137.32/61
c 8-c 8	1.12 (2)	Bel-Inl-Be2'	150.50(3)
c 9-0 9	1.14 (2)	Re2-In1-Re2'	71.07(3)
Mittelwert	1.14 (2)	In1-Re2-In1	108.93(4)
Inl'-Rel'-C 5	88.7(5)		
In1'-Rel'-C 6	35.7(5)		
Inl'-Rel'-C 7	54.8(6)		
Inl'-Rel'-C 8	88.6(5)		
Inf-Ref-C 9	177.6(5)		
C 5-Ref-C 6	88.3(7)		
0 5-Rel-0 7	173.4(8)		
C 5-Ref-C 8	89.5(7)	_	
C 5-Rof-C 9	95.6(7)	E C	422/74 Tab.5

Tab. 6. Kürzeste intra- und intermolekulare nichtbindende Atomabstände mit Standardabweichungen in Klammern

ilar		
4.62(2)	C 50 2	3.47(2)
4.25(1)	0 50 9	3.25(2)
4,32(2)	c 60 8	4.13(2)
3,25(2)	0 60 8	3.28(2)
5.08(2)	C 7O 2	3-37(2)
3,31(2)	0 70 2	3.38(2)
3.19(2)	c 8c 1	3.29(2)
1.63(2)	0809	2.97(2)
3.60(2)	0 9 0 1	3.25(2)
3 55(2)	0 9	2.97(2)
3.38(2)		
	<pre>ilar 4.62(2) 4.25(1) 4.32(2) 5.25(2) 5.08(2) 3.31(2) 5.19(2) 5.63(2) 3.56(2) 3.55(2) 3.38(2)</pre>	Iter 4.62(2) C 50 2 4.25(1) 0 50 9 4.32(2) C 60 8 5.25(2) 0 60 8 5.38(2) C 70 2 3.31(2) 0 70 2 3.19(2) C 80 1 5.65(2) 0 80 9 3.56(2) C 90 1 3.58(2) 50 1 1

A A							
intramolekular							
InlInl	4.525(2)						
In1C 1	3, 331 (2)						
In1C 2	3.028(2)						
In1C 3	3.385(2)						
In1C 4	3.015(2)						
tnl0 5	3.357(2)						
fulC 6	3.262(2)						
In1C 7	3.236(2)						
In1C 8	3.359(2)						

C 422/74 Tab. 5

¹²⁾ H. D. Kaesz, B. Fontal, R. Bau, S. W. Kirtley und M. R. Churchill, J. Amer. Chem. Soc. 91, 1021 (1969).

¹³⁾ L. B. Handy, J. K. Ruff und L. F. Dahl, J. Amer. Chem. Soc. 92, 7312 (1970).

Diese CO-Liganden am Re 2 bzw. Re 2' haben in *trans*-Stellung jeweils ein im wesentlichen σ -gebundenes Indiumatom. Hierdurch könnten die Atome C2, C4 bzw. C2', C4', ähnlich wie es bei entsprechenden C-Atomen von Mn₂(CO)₈{ μ -InMn(CO)₅}₂ an die Ringebene von Mn der Fall ist⁴, auch an die Re-Ringatome fester gebunden sein.

Die gemessenen C – O-Bindungslängen erlaubten wegen des großen Fehlers in den Lagekoordinaten der C- bzw. O-Atome ebenfalls keine Feststellung von signifikanten Unterschieden.

Zur Veranschaulichung geometrischer Veränderungen in M₂M₂-Metallvierringen mit M' - M'-Bindung und zur Vorhersage des Re – Re-Abstandes in der bisher noch nicht isolierten Verbindung $Re_2(CO)_8 \{\mu$ -GaRe(CO)_5 $\}_2$ mittels eines einfachen Modells wurden die Metallvierringe untersuchter $M'_{2}(CO)_{8}{\mu-MM'(CO)_{5}}_{2}$ -Cluster (M' = Mn, M = Ga bzw. In; M' = Re, M = In) in Abb. 2 maßstabsgetreu gezeichnet. Die Radien der eingezeichneten Kreise sind entsprechend den Paulingschen kovalenten Einfachbindungsradien der Atome im Vierring gewählt, so daß deren Summen die jeweiligen Atomabstände ergeben. Die einzelnen Zeichnungen vergegenwärtigen, daß mit abnehmender Atomgröße der Hauptgruppenelemente (Ga bzw. In) der Mn-Mn-Abstand abnimmt, während die Winkel gleichbleiben. Weiterhin zeigt sich, daß mit zunehmender Atomgröße des Übergangsmetalls (Mn bzw. Re) diese Atome näher aneinanderrücken. Hierbei werden die Ringwinkel an den Hauptgruppenelementen deutlich kleiner, während die Winkel am Übergangsmetall entsprechend größer werden. Eine Übertragung des ermittelten Sachverhalts der Winkelkonstanz in den beiden M_2Mn_2 -Vierringen (M = Ga, In) auf die M_2Re_2 -Vierringe (M = Ga, In) ermöglicht dann eine Abschätzung des Re-Re-Abstandes von 3.05 Å für einen Ga₂Re₂-Vierring des bisher noch nicht dargestellten Re₂(CO)₈{ μ -GaRe(CO)₅}₂ (vgl. Abb. 2). Wir versuchen, diesen Cluster herzustellen, um die Gültigkeit dieses einfachen Modells zu überprüfen.

Abb. 2. Maßstabsgetreue Wiedergabe der untersuchten M'_2M_2 -Metallvierringe (M' = Mn, M = Ga, In; M' = Re, M = In)in Form eines einfachen Modells (Erklärung siehe Text)

In Tab. 6 sind die intra- und intermolekularen nicht bindenden Abstände enthalten. Die intermolekularen Abstände erlauben die Folgerung, daß zwischen den Molekülen keine Bindungsbeziehungen bestehen, die über van der Waalssche Wechselwirkungen hinausgehen.

Wir danken Herrn Professor Dr. Friedo Huber für die großzügige Förderung dieser Arbeit.

[422/74]